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Abstract

This paper considers the problem of reconstructing the
shape of thin, texture-less objects such as leafless trees when
there is noise or deterministic error in the silhouette ex-
traction step or there are small errors in camera calibra-
tion. Traditional intersection-based techniques such as the
visual hull are not robust to error because they penalize
false negative and false positive error unequally. We pro-
vide a voxel-based formalism that penalizes false negative
and positive error equally, by casting the reconstruction
problem as a pseudo-Boolean minimization problem, where
voxels are the variables of a pseudo-Boolean function and
are labeled occupied or empty. Since the pseudo-Boolean
minimization problem is NP-Hard for nonsubmodular func-
tions, we developed an algorithm for an approximate so-
lution using local minimum search. Our algorithm treats
input binary probability maps (in other words, silhouettes)
or continuously-valued probability maps identically, and
places no constraints on camera placement.

The algorithm was tested on three different leafless trees
and one metal object where the number of voxels is 54.4
million (voxel sides measure 3.6 mm). Results show that our
approach reconstructs the complicated branching structure
of thin, texture-less objects in the presence of error where
intersection-based approaches currently fail.1

1. Introduction

The reconstruction of thin, texture-less objects such as
leafless trees is a necessary step for agricultural applications
such as robotic pruning. In these applications, the exact
shape of the object is not known a priori, but it is known

1Mention of trade names or commercial products in this publication is
solely for the purpose of providing specific information and does not imply
recommendation or endorsement by the U.S. Department of Agriculture.
USDA is an equal opportunity provider and employer.

(a) Original image (b) Silhouette Probability Map

(c) Visual Hull reconstruction (d) Our reconstruction
Figure 1. [Best viewed color.] The goal of this paper is to
reconstruct the shape of leafless trees in the presence of sil-
houette extraction and camera calibration error. Left: VH re-
construction. Right: reconstruction using our algorithm. Re-
sults throughout this document are displayed with Meshlab
(http://meshlab.sourceforge.net, developed with support from the
3D-CoForm project).

that the objects do not contain concavities.2 For these rea-
sons, we pursue a Shape from Silhouette (SfS) method for
reconstructing thin, texture-less objects from images.

The visual hull (VH) is a type of SfS reconstruction gen-
erated by intersecting the backprojected silhouette view-

2A concavity in the 3D sense is an egg-shaped depression in the surface
of the object.
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ing cones of N cameras [16]. The VH reconstruction
can be implemented in fast algorithms for either voxel-
based or polyhedral-based representations ([5],[7],[9],[17],
[19],[20]), and allows the use of silhouettes when other fea-
tures are not available or reliable.

In real-world applications, silhouette or camera calibra-
tion error is often present, and the VH approach is ill-
equipped to deal with this error, particularly false negatives
(false negatives are pixels that are marked background but
represent the target object). Reconstructions of thin objects
are particularly sensitive to the effects of silhouette errors,
whether from silhouette extraction errors, noise, or camera
calibration error, because the two-dimensional projections
of thin objects may be only a few pixels wide. As a result,
small errors in silhouette extraction can have large effects
on the accuracy of a VH reconstruction. In addition, voxel
and pixel resolution settings, even when silhouettes are ac-
curate, can produce VH reconstructions that fail to recon-
struct many portions of thin objects.

When a reconstruction resembles the original object, we
call it a representative reconstruction. Given these prelim-
inaries, a statement of our problem is: assuming silhouette
and camera calibration error is present, generate represen-
tative reconstructions of thin, texture-less objects from sil-
houette images. We consider a solution to this problem to
be the final step of a three-dimensional reconstruction sys-
tem, as the various characterisitics of the objects we con-
sider means that photoconsistency approaches will recover
little useful information about the shape of the object.

The set of input silhouettes may take one of two differ-
ent forms. In the first, silhouette images are binary-valued.
We call this problem the Shape from Inconsistent Silhou-
ette (SfIS) problem.3 The second is Shape from Silhou-
ette Probability Maps (SfSPM); instead of binary silhou-
ettes, silhouette probability maps (SPM) are given as input,
where the probalities that the pixels represent the object are
continuously-valued. SPMs are used to avoid making early
committments to one label or the other. In this paper, SfIS
is considered a special case of the SfSPM problem, where
the probabilites are restricted to binary values.

Our approach to SfSPM is to penalize false positive and
false negative SPM error equally. To that end, we give
a pseudo-Boolean error function (f : Bn 7→ R, where
B = {0, 1} and R denotes the set of real numbers) that char-
acterizes the match between the SPMs and the reconstruc-
tion as the pixel-by-pixel differences between the SPMs and
the image of the reconstruction. This error function penal-
izes false positive and false negative error equally, unlike
the VH approach.

The error function is non-submodular, and to minimize a
non-submodular pseudo-Boolean function is NP-Hard (un-

3What we call SfIS is the same as Landabaso et al’s SfS-IS (Shape from
Silhouette with Inconsistent Silhouettes) [15].

less P=NP).4 Consequently, we focus on local minimum
search methods to find representative reconstructions from
SPMs, and describe a local minimum search algorithm that
uses heuristics developed for SfSPM. Experimental results
on three different trees and one metal object are shown in
§4. These results show that our solution is a great improve-
ment over the existing intersection-based approaches, as it
reconstructs the complicated branching structure of trees,
even under silhouette extraction and camera calibration er-
ror.

Our contributions to the state-of-the-art on SfIS, SfSPM,
and the reconstruction of thin, textureless objects are as fol-
lows:

1. The formulation of the SfSPM (and by extension, SfIS)
problem as a pseudo-Boolean optimization problem
where false negative and false positive error is equally
weighted.

2. Introduce local minimum search algorithms of pseudo-
Boolean optimization to the SfSPM problem and show
how heuristics developed for SfSPM allow for lower
values of the error function to be found.

3. A reconstruction method that produces representative
reconstructions of thin, texture-less objects in the pres-
ence of silhouette extraction and camera calibration er-
ror.

1.1. Related work

Recent works on SfIS and SfSPM have sought to com-
pensate for the problems of VH approaches by delaying de-
cisions about a voxel’s label until more information about
the voxel can be gained. All of these works use a voxel-
based representation for the reconstruction. They can be
divided into three main categories: sensor fusion, proba-
bilistic, and minimization of silhouette inconsistency ap-
proaches.

In the sensor fusion approach, an observation is repre-
sented using a sensor model, and then the model informa-
tion is fused to determine voxel occupancy probabilities.
Franco and Boyer [8] used a forward sensor model for each
pixel in order to jointly infer voxel occupancy probabilities
from all pixels. Dı́az-Más et al [6] fused sensor uncertanity
models using Dempster-Shafer theory. Guan et al [11] de-
tected static occluding objects by using a Bayesian sensor
formulation for voxels, and later, fusing the information to
determine the location of occluders.

The next category concerns probabilistic methods. Che-
ung et al [4] proposed a projection test called SPOT, or
Sparse Pixel Occupancy Test, which attempts to increase
speed and reduce the effects of segmentation noise. Land-
abaso et al [15] extended the ideas of [4] concerning projec-
tion tests with the Sampled Projection Test with a different

4See §2.1 for a more in-depth discussion.
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error function. Also, in [15], the authors propose a method
called the unbiased hull that compensates for silhouette er-
ror by classifying voxels that backproject to a minimum
number of silhouettes T ? as occupied (while taking into ac-
count occlusion by the visual hull). T ? is found by min-
imizing an error function that describes the probability of
voxel misclassification.

Our work is most closely aligned with that of Haro and
Pardás [13]. Their approach is to minimize an approxima-
tion of the silhouette inconsistency error, where the func-
tion used depends on whether the SfIS or SfSPM problem
is being considered. They consider voxels as continuously-
valued variables in the range of 0 and 1, and seek a min-
imum by gradient descent. Binary voxel labels are deter-
mined by a threshold. In comparison, our approach uses
a closed-form, exact silhouette inconsistency error function
which is identical for SfIS and SfSPM and considers voxel
labels as Boolean during the minimization process, and is
not dependent on the setting of parameters or thresholds.

2. Formulation of the pseudo-Boolean error
function

We represent the difference between SMPs and images
of any reconstruction as a closed-form pseudo-Boolean
function.

The pseudo-Boolean error function is formulated over a
set of voxels x = {x0, x1, ...., xn−1}. A voxel is empty if
its label is 1, and occupied if its label is 0. Note that this
labeling is the reverse of most other literature on this sub-
ject, and is only done to make the function simpler. For
instance, if we had labeled empty voxels 0 and occupied
voxels 1, all of the variables (xi) would have been negated
(x̄i). By simply switching the labels, the formulation of the
error function is more straightforward as it consists exclu-
sively of non-negated variables.

Let an individual pixel in a SPM be pi. ri is the value
of the reconstruction image pixel at the same location as
pi. Since the labels of occupied and empty are reversed for
voxels, we also reverse the usual labeling for pixels. Con-
sequently, the value of pi represents the probability that pi

is viewing background. For example, if pi = 0, then pi is
viewing the object with one hundrend precent probability
P (pi = object) = 1, and if ri = 0, then ri back-projects to
the reconstruction where voxels are labeled occupied.5

Given voxel labeling x, the value of reconstruction pix-
els can be found. Let Spi

be the set of voxels that are in-
tersected by a viewing ray from pixel pi. Then the label of
reconstruction image pixel ri is

5Pixel probabilities are binary for the SfS-IS problem, and
continuously-valued for the SfSPM problem.

ri =
∏

xa∈Spi

xa (1)

In other words, ri = 1, representing background, only if
all voxels viewed by pi are empty.

The Silhouette Inconsistency Error (SIE) function rep-
resents the differences between reconstruction images and
silhouette probability maps. For SPMs and reconstruction
image pair of pixels pi and ri,

SIE(pi, ri) = |pi − ri| (2)

Before presenting the general formula for the SfSPM
problem, we will first represent |pi − ri| as a pseudo-
Boolean function by considering the two cases of the SfIS
problem: when pi is 0 (a silhouette pixel) or when pi is 1 (a
non-silhouette pixel), and substituting for ri as in Eq 1:

SIE(pi,x) =

{∏
xa∈Spi

xa pi = 0,

1−
∏

xa∈Spi
xa pi = 1

(3)

We now represent |pi−ri| as a pseudo-Boolean function
for the general case that pi is continuously-valued (pi ∈
[0, 1]):

SIE(pi,x) =(1− pi)
∏

xa∈Spi

xa + pi(1−
∏

xa∈Spi

xa) (4)

SIE(pi,x) =pi − (1− 2pi)
∏

xa∈Spi

xa (5)

For the special case that pi ∈ {0, 1}, Eq. 5 is equivalent
to Eq. 3.

SIE for a set of input images I is the sum of the SIE error
of the individual pixels as in Eq 6.

SIE(I,x) =
∑
pi∈I

SIE(pi,x) (6)

As mentioned in §1, the SIE portion of the cost func-
tion treats false positive and false negative errors equally.
We will now show how traditional intersection-based ap-
proaches treat these types of error, with reference to our
error function SIE, as applied to the SfIS problem.

First we split SIE(I,x) into two parts: the false positive
error (FP ) and the false negative error (FN ). If a pixel
pi is part of the silhouette (0) and the reconstruction image
pixel ri is 1, then pi is a false positive. The opposite case is
a false negative. Then the false positive and false negative
error is

3



FP (I,x) =
∑

pi∈I,pi=0

SIE(pi,x) (7)

FN(I,x) =
∑

pi∈I,pi=1

SIE(pi,x) (8)

SIE(I,x) =FP (I,x) + FN(I,x) (9)

In the VH approach, the false negative error is zero: all non-
silhouette pixels project to empty voxels. We can conclude
that the VH approach minimizes false negative error, set-
ting it to zero, while ignoring false positive error. We can
represent the VH approach in terms of a pseudo-Boolean
function as follows, where M is a very large constant, such
as the number of pixels in all images.

SIEvh(I,x) = FP (I,x) + M · FN(I,x) (10)

The global minimum of SIEvh is the VH reconstruc-
tion, where false positive and false negative errors are un-
equally weighted. As a result, false negative pixels have a
disproportionally large impact on the VH reconstruction as
compared to false positive pixels.

2.1. Complexity of minimizing SIE

Provided that there is at least one pixel in the SPMs
where P (pi = object) > P (pi = background), SIE
is nonsubmodular. Finding the global minimum of nonsub-
modular pseudo-Boolean functions is a NP-Hard problem
([3]). We mention that the global minimum of submodular
pseudo-Boolean functions can be found in polynomial time
by using graph cut methods, such as the algorithm by Kol-
mogorov and Zabin [14] or QPBO [12]; QPBO may also
find some labels for variables of nonsubmodular functions
when the function is quadratic. Even after reduction to a
quadratic pseudo-Boolean function, graph cut methods such
as QPBO [12] are unable to label any voxel for SIE in Eq.
6, even when there is a small number of voxels, such as
50. For these reasons, in the next section we describe an
approximation solution to minx SIE(x) that finds a local
minimum given an initial voxel labeling.

3. Local minimim search
The search from a local minimum is a method borrowed

from the optimization community. A more in-depth discus-
sion can be found in [3], which is the source of our discus-
sion on the topic.

First we begin with a definition of a local minimum for
a pseudo-Boolean function f . For a labeling of voxels x,
there is a neighborhood N of other labelings y, where y
is equal to x except that the label of one voxel differs be-
tween the two labelings. A particular labeling x is called

a local minimum if there are no other labelings y in the
neighborhood of x that have a lower value of f than x
does. In other words, x is a local minimum if and only
if f(x) ≤ f(y) ∀y ∈ N (x).

This property of local minima can be stated in terms of
partial first derivatives as follows. Let ∂f

∂xi
be the partial

first derivative of f with respect to xi. Then, x is a local
minimum if and only if for each voxel xi of x the following
is satisfied:

xi =

{
1 if ∂f

∂xi
(x) ≤ 0

0 if ∂f
∂xi

(x) ≥ 0
(11)

In order to find a local minimum given an initial label-
ing x(0), the labels of individual voxels are changed until
Eq 11 is satisfied for all voxels. This process to find a lo-
cal minimum xmin for f , when f = SIE, is presented in
pseudocode by algorithm LOCAL-MIN-SEARCH, Alg 1.

Algorithm 1 LOCAL-MIN-SEARCH(f(·)), x(0), c)

Require: c = f(x(0))
1: n = number of voxels
2: k = 0
3: while x(k) is not a local minimum do
4: for all i = 0 to n do
5: condition0 = ∂f

∂xi
(x(k)) < 0 and x

(k)
i = 0

6: condition1 = ∂f
∂xi

(x(k)) > 0 and x
(k)
i = 1

7: if condition0 or condition1 then
8: x(k+1) = x(k)

9: x
(k+1)
i = ¬x

(k)
i

10: c = c− | ∂f
∂xi

(x(k))|
11: k = k + 1
12: end if
13: end for
14: end while
15: return local minimum x(k), value of f at x(k), c

Local minimum search is similar to Iterated Condition-
ing Modes, or ICM, which has been used to minimize en-
ergy functions in vision ([2], [10], and comparison to other
techniques for energy minimization [21]).

3.1. Local minimum searches for SfSPM

For any value c, where SIE(x) = c, there are many dif-
ferent labelings y such that SIE(y) = c. This observation
is similar to that of the traditional VH theory as presented
by Laurentini [16]. In the VH theory, there are many label-
ings of voxels that are silhouette consistent. However, the
VH is chosen to be the labeling with the greatest volume.
In our alteration of the local minima search, we also specify
that any local minima xmin where SIE(xmin) = c have
the greatest volume labeling out of all labelings y where
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SIE(y) = c. We refer to this as the greatest volume prop-
erty.

We require that the local minimum labeling xmin has
the greatest volume property because of the following situ-
ation, as shown in Fig 2a. In that figure, Camera 0 has no
silhouette error, as silhouette pixels from Camera 0 project
to at least one of the three occupied voxels. Camera 1 has
some false negative error from voxel v. If voxel v is re-
moved as in Fig 2b, the false negative error for Camera 1
will decrease by e1, but the false positive error for Camera
0 will increase by e0, e0 > e1. Because of this type of
deadlock, voxel v will never be removed during algorithm
LOCAL-MIN-SEARCH.

Since the local minimum search is done iteratively, thin
protrusions and isolated voxels in the local minimum, like
those in Fig. 2a are common, and the local minimum search
would frequently stall on these types of labelings. However,
by altering the local minimum search to require that local
minima have the greatest volume property, it is possible to
avoid getting trapped in minima with high values of SIE.

We will illustrate this process in Fig. 2c. Here, the voxel
labeling has the same value of SIE, c, as in Fig. 2a, though
Fig. 2c represents the maximal labeling for SIE(x) = c.
Then when we test whether or not to change voxel v’s label
to empty, we can see in Fig. 2d that the value of SIE de-
creases by e1, since the false negative error is removed for
Camera 1 and Camera 0 has no error.

To alter LOCAL-MIN-SEARCH for SfSPM, we sim-
ply change the conditions on line 6 so that vox-
els with ∂f

∂xi
(x(k)) ≥ 0 and x

(k)
i = 1 will have

their labels changed. We call this altered algorithm
LOCAL-MIN-SEARCH-SFSPM.

4. Experiments

4.1. Implementation details

We have implemented LOCAL-MIN-SEARCH-SFSPM
in C++, on a machine with 8 Intel Xeon processors at 2.4
GHz and 36 GB RAM. The success of many optimization
search methods depends heavily on the starting point of the
search, and we found that LOCAL-MIN-SEARCH-SFSPM
is sensitive to the initial labeling x(0). In our implemen-
tation, we set x(0) to the visual hull labeling. Algorithm
LOCAL-MIN-SEARCH-SFSPM will also return different
results depending on the order in which voxels are tested
(Alg. 1, line 4 has the voxel indices tested in increasing or-
der). We found that randomizing the voxel indices for test-
ing on every iteration (at the while loop on line 3 of Alg.
1) produced better results with lower values of SIE than a
fixed ordering.
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Figure 2. [Best viewed in color] Example in 2D illustrating the
need for an altered local minimum search for SfSPM. There are
two 1D cameras, Camera 0 and Camera 1. The regions of both
cameras that represent silhouette regions are denoted with an S,
and the viewing rays on the boundary of S are black lines. Camera
0’s entire image consists of silhouette pixels, while Camera 1 has
two non-silhouette regions, one either side of a central silhouette
region. Gray lines represent the boundary of Camera 1.

4.2. Experiments on trees and thin metal object

Our tests were conducted on three different leafless trees
with different branching characteristics. The trees were re-
moved from a research orchard plot, defoliated for use in
the tests, and mounted in a stand. We also experimented
with a less complicated object: a metal pole with a cop-
per coil suspended from the pole. All of these experiments
used the same camera configuration, which consisted of 10
low-cost webcameras and 20 industrial cameras, both with
image size 640x480 pixels, mounted on one wall and ceil-
ing and pointed toward the area where the trees and metal
object would be placed. The webcams had a larger field of
view than the industrial cameras, and inspecting the camera
calibration matrices for both types of cameras showed that
the focal length in terms of pixel dimensions for the web-
cameras was half that of the industrial cameras. Because
the size of the tree was large (roughly 2 meters high by 2
meters wide), many cameras only viewed a portion of the
tree.

We acquired silhouettes and silhouette probability maps
through background subtraction (reviews and evaluations
are given in [1] and [18]). We acquired 50 images of the
scene without the objects and modeled each pixel as one
Gaussian distribution. Then, we compared images acquired
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with the object in the scene and the background model, then
assigned a probability that each pixel represented the object.
For the silhouette probability maps, we discretized the con-
tinuous range [0, 1] into 256 values for ease in displaying
the silhouette probability maps as unsigned 8-bit integer im-
ages. The silhouette probability maps were thresholded at
0.5 to produce silhouettes for the experiments. In this man-
ner, we were able to compare the results of our algorithm
for the SfIS problem by using the silhouettes and the SfSPM
problem by using the silhouette probability maps, when the
silhouettes and silhouette probability maps are derived from
the same background model.

Since we used a background subtraction method to ex-
tract silhouettes, silhouette error resulted from the fol-
lowing: the target object matched the background color,
shadow effects, thin object regions relative to pixel size, and
image sensor noise. Camera calibration was performed us-
ing a custom-made calibration rig with seven different cal-
ibration patterns so that all cameras could be calibrated to
the same world coordinate frame. However, the calibration
error was dependent on the camera’s location with respect
to the calibration rig and the images used for calibration,
and some cameras did have higher calibration error than
others (average error for external parameters ranged from
0.2-10 pixels, and the webcameras had greater calibration
error than the industrial cameras, as was expected). While
this error was small, since the objects to be tested were quite
thin, the camera calibration error did have a large effect on
the quality of a visual hull reconstruction.

The number of voxels in SIE was 54.4 million (voxel
sides measured 3.6 mm) and the number of terms was 8.6
million. The degree of SIE was 975 for all of the tests.
The LOCAL-MIN-SEARCH-SFSPM algorithm was imple-
mented in parallel and run times ranged from 16-40 min-
utes, depending on the dataset. The number of iterations
for the while loop at line 3 of LOCAL-MIN-SEARCH was
14-16, depending on the dataset.

4.3. Evaluation and Discussion

Results for the four datasets are shown in Figs. 3 - 6. The
reconstructions using our approach for both the SfIS and
SfSPM problems offer a great improvement over the tradi-
tional visual hull approach. Our approach reconstructs very
complicated branching structure in the presence of small
camera calibration error and silhouette extraction error. A
negative aspect of our approach is the small noisy regions
in the reconstruction, which could be removed with some
post-processing techniques.6

While the values of SIE may differ by 100, 000 or more
for the SfIS versus SfSPM problems, we found that the re-
constructions are largely the same. We hypothesize that

6Our results are shown without postprocessing other than to smooth the
voxels into a surface.

the small differences between the SfIS and SfSPM recon-
structions are an artifact of the random order for voxel test-
ing (as mentioned §4.1) rather than of using binary versus
continuously-valued silhouette probability maps.

We compared our approach to SPOT [4] and Unbiased
Hull from Landabaso et al [15], where the choice of pro-
jection test was SPOT. While SPOT works well for noisy
silhouettes of thicker objects such as humans, SPOT does
not reconstruct branching structure. The unbiased hull ap-
proach was able to reconstruct more of the large-scale fea-
tures of the tree than SPOT, but it introduced artifacts near
the boundaries of image viewing regions and misses small-
scale features of branches. In the absence of occlusion by
the visual hull, which is typical in our datasets, the unbi-
ased hull approach classifies voxels that backproject to a
minimum number of silhouettes T ? as occupied; T ? is se-
lected by exhaustively evaluating the cost function for each
possible value of T ?. Larger-scale details exert a greater
influence over the value of the cost function than fine de-
tails in the unbiased hull approach, so larger branches are
reconstructed and smaller branches are not. Our recon-
structions are more representative of the original object
than the intersection-based comparison methods because
our method does not assume that one threshold, such as T ?,
will be applicable to all voxels.

5. Closing remarks
We presented an algorithm for reconstructing thin, tex-

tureless objects from silhouette probability maps or silhou-
ettes by formulating the difference between input and recon-
struction images as a pseudo-Boolean minimization prob-
lem. We were able to reconstruct the objects with greater
fidelity than the tradiional visual hull technique. Our ap-
proach is flexible in that it is not dependent on the number
of cameras or the characteristics of those cameras. As a re-
sult, we were able to successfully use a mixture of high-cost
and low-cost cameras with varying degrees of accuracy for
reconstruction.
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